

AAP-003-006202 Seat No. _____

B. Sc. (B.I.) (Sem. II) (CBCS) Examination

April / May - 2016

BI-202-A : Mathematics & Statistics

(New Course)

Faculty Code : 003
Subject Code : 006202

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

SECTION - A

1 Choose the correct answers : 20

(1) The mean value of $x^2 - 3x$ in (1,2) using Rolle's mean value theorem is _____.

(A) $\frac{3}{2}$ (B) 1

(C) 2 (D) $\frac{2}{3}$

(2) The minima of $x^3 - 12x$ is _____.

(A) 16 (B) -2

(C) 2 (D) -16

(3) If $f = x^2 + 3xy + y - 1$ then $\frac{\partial f}{\partial x}$ at $(4, -5)$ is ____.

(A) -7 (B) 13

(C) -2 (D) -14

(4) The expansion of $\sin x$ is

$$(A) \quad x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$(B) \quad x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$(C) \quad 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

(D) None of these

(5) Among the following which is always an increasing function for all $x > 0$?

(A) $\cos x$ (B) $\log x$
 (C) A and B both (D) None of these

(6) If $u = x^2 + 2xy^2 + x^3y + y^3 + 5$ then $\frac{\partial^2 u}{\partial x^2} =$

(A) 0 (B) $2 + 3x^2y$
 (C) $2x + 2y^2 + 3x^2y$ (D) $2 + 6xy$

(7) The equation of a straight line with slope 5 and y-intercept -3 is _____.
 (A) $y = -3x + 5$ (B) $y + 5 = -3x$
 (C) $y + 3 = -5x$ (D) $y = 5x - 3$

(8) The angle between the two vectors \bar{a} and \bar{b} is 0 , then,
 (A) $\bar{a} \perp \bar{b}$ (B) $\bar{a} \parallel \bar{b}$
 (C) $\bar{a} \circ \bar{b} = 0$ (D) None of these

(9) The mid point of the line joining the two points $(3,4)$ and $(-2,-1)$ is _____.
 (A) $\left(\frac{1}{2}, \frac{3}{2}\right)$ (B) $\left(\frac{-1}{2}, \frac{-1}{2}\right)$
 (C) $(0,0)$ (D) $(-1,-1)$

(10) $[abc] = \dots$ if $a = (2, 2, 2)$, $b = (-3, -3, -3)$ and $c = (-1, 0, 1)$.
 (A) 0 (B) $2i + 2j + 3k$
 (C) 2 (D) $-3i - 3j - 3k$

(11) $\int (x^9 + 9x^3) dx = \underline{\hspace{2cm}}$

(A) $\frac{x^{10}}{10} + \frac{9x^4}{4} + c$

(B) $\frac{x^{10}}{10} - \frac{9x^2}{3} + c$

(C) $\frac{x^{10}}{10} + 27\frac{x^3}{4} + c$

(D) None of these

(12) $\int \frac{1}{x} dx = \underline{\hspace{2cm}}$

(A) $\frac{-1}{x^2} + c$

(B) $\frac{1}{x^2} + c$

(C) $\log x + c$

(D) $\frac{2}{x^2} + c$

(13) Coefficient of determination is denoted by _____.

(A) R

(B) r

(C) c

(D) d

(14) Range of r is _____.

(A) -1 to 1

(B) 0 to 1

(C) -2 to 2

(D) None of these

(15) The signs of correlation coefficient and regression coefficient are always _____.

(A) Different

(B) Same

(C) Varying

(D) None of these

(16) In usual notations, $P(A - B) = \underline{\hspace{2cm}}$.

(A) $P(A) - P(B)$

(B) $P(B) - P(A)$

(C) $P(A) - P(A \cap B)$

(D) None of these

(17) If A and B are mutually exclusive events then

$P(A \cup B) = \underline{\hspace{2cm}}$

(A) $P(A) + P(B) - 1$

(B) $1 - P(A \cup B)$

(C) $P(A) - P(B)$

(D) $P(A) + P(B)$

(18) Mathematical expectation is nothing but the _____ of the data.

(A) Mode (B) Variance
 (C) Mean (D) Probability

(19) The probability distribution of a random variable x is as follows then value of P is _____.

x_i	0	1	2	3	4
$P(x_i)$	$\frac{1}{6}$	P	$\frac{1}{4}$	P	$\frac{1}{6}$

(A) $\frac{5}{24}$ (B) $\frac{2}{3}$
 (C) $\frac{3}{4}$ (D) None of these

(20) For a probability distribution $\sum P(x_i) = .$

(A) 0 (B) -1
 (C) 1 (D) None of these

SECTION - B

1 (a) Answr any three : **3×2=6**

(1) Find $(2\bar{a} - 3\bar{b}) \circ (3\bar{a} + \bar{b})$ where $\bar{a} = 2i - 3j + k$ and $\bar{b} = 4i - j - 2k$.

(2) Prove that $y = x - \frac{1}{x}$ is an increasing function of \mathbb{R} .

(3) Verify Lagrange's mean value theorem for the function $2x - x^2$ on $[0, 2]$.

(4) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if (i) $z = xy$ (ii) $z = \frac{x}{y}$.

(5) Show that the points $(2,2)$, $(2,4)$, $(4,4)$ and $(4,2)$ are the vertices of a square.

(6) Find (i) $\int (e^x + 2x + 1) dx$ (ii) $\int_0^4 (x + 1) dx$

(b) Answer any three : **3×3=9**

(1) What would be the value of x when the distance between $(x, -4)$ and $(-8, 2)$ be 10 ?

(2) Find $\int \frac{x^3}{x-1} dx$.

(3) Find the area of triangle whose vertices are $(1, 5), (-1, 3)$ and $(5, 6)$.

(4) Find the ratio in which the point $(2, 7)$ divides the join of the points $(1, 5)$ and $(3, 9)$.

(5) Find the equation of straight line passing through the point $(2, 4)$ and making equal intercepts of opposite sign on the axes.

(6) Expand $\log x$ in terms of $x-1$.

(c) Answer any two **2×5=10**

(1) Let $A(-1, 3)$ and $B(2, 12)$ be two points in \mathbb{R}^2 , find

(i) equation of the line AB

(ii) slope of the line AB

(iii) length of the line AB.

(2) Let $u = \sin(2x+3y) + \log(2x-y)$ find

$\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right)$ and $\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right)$

(3) Show that the function $f(x) = x^3 - 6x^2 + 9x - 8$ has a maximum value at $x=1$ and a minimum value at $x=3$. Also find these values.

(4) Find the scalar triple product and vector triple product of the vectors $4i - j - 2k$.

(5) Integrate $\frac{1}{4+\sin x}$ with respect to x .

2 (a) Answer any three : **3×2=6**

- (1) If A and B are two independent events and $P(A) = 0.5, P(B) = 0.2$ then find $P(A \cup B)$.
- (2) Explain positive and negative correlation by scatter diagram method.
- (3) If $E(x)=2$ then find the value of $E(3x+2)$
- (4) If the regression lines are $4x - 5y + 33 = 0$ and $-9y + 20x - 107 = 0$ then find x and y.
- (5) If $P(A) = 0.7, P(B) = 0.6$ and $P(A \cap B) = 0.56$, find $P(A' \cap B')$.
- (6) Expand e^x in terms of $x-1$.

(b) Answer any three : **3×3=9**

- (1) Two dice are tossed simultaneously then find the probability that sum of the number on two dice are (i) less than 6 (ii) divisible by 9.
- (2) There are 3 defective things out 10. Three things are taken one after the other; find the probability that the three balls are defective for the selection (i) with replacement (ii) without replacement.
- (3) The probability distribution of demand of a commodity is given below :

<i>Demand(x)</i>	5	6	7	8	9	10
Prob $P(x)$	0.05	0.1	0.3	0.4	0.1	0.05

Find the expected demand and its variance.

- (4) Explain any five properties of regression coefficients.
- (5) For a bivariate data $n^2 - 1 = 255$ and correlation coefficient is 0.8. Then find the range of correlation coefficient.

- (6) Find $\int \frac{2x}{(x-1)(x-2)} dx$.

(c) Answer any two.

2×5=10

(1) Find the regression lines from the following data and also estimate y for $x=1$ and x for $y=4$:

$X :$	3	2	-1	6	4	-2	5	7
$Y :$	5	13	12	-1	2	20	0	-3

(2) Find the coefficient of rank correlation:

$X :$	28	27	26	35	39	42	39	37	32	22
$Y :$	40	42	38	49	40	50	38	44	45	36

(3) The probability distribution of a random variable x is as follows:

$X :$	-3	-2	-1	0	1	2	3
$P(X) :$	0.05	P	0.30	0	0.30	0.5	P

Then find the value of P and also find $E(x)$ and $V(x)$.

(4) If for two events A and B ,

$P(A) = 0.6, P(B') = 0.5, P(A \cap B) = 0.3$ then find

(i) $P(A \cup B)$ (ii) $P(A' \cap B')$ (iii) $P(A' \setminus B')$.

(5) If $\bar{a} = 2i + 2j - k, \bar{b} = 3i - j - k$ and $\bar{c} = i + 2j - 3k$ then

show that $(\bar{a} \times \bar{b}) \times \bar{c}$ and $\bar{a} \times (\bar{b} \times \bar{c})$ are not the same.